Non-parametric entropy estimators based on simple linear regression

نویسندگان

  • Hideitsu Hino
  • Kensuke Koshijima
  • Noboru Murata
چکیده

Estimators for differential entropy are proposed. The estimators are based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Simple linear regression is utilized to estimate the values of density function and its second derivative at a point. After estimating the values of the probability density function at each of the given sample points, by taking the empirical average of the negative logarithm of the density estimates, two entropy estimators are derived. Other entropy estimatorswhich directly estimate entropy by linear regression, are also proposed. The proposed four estimators are shown to perform well through numerical experiments for various probability distributions. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation

The Finite Sample Performance of Semiand Nonparametric Estimators for Treatment Effects and Policy Evaluation This paper investigates the finite sample performance of a comprehensive set of semiand nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estim...

متن کامل

Generalized Maximum Entropy Estimation of Spatial Autoregressive Models

We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable and residuals. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators in small and medium sized samples relative to classical estimators. Finally, the estimators are ap...

متن کامل

Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions

Generalized linear models (Wedderburn and NeIder 1972, McCullagh and NeIder 1988) were introduced as a means of extending the techniques of ordinary parametric regression to several commonly-used regression models arising from non-normal likelihoods. Typically these models have a variance that depends on the mean function. However, in many cases the likelihood is unknown, but the relationship b...

متن کامل

Semiparametrics, Nonparametrics and Empirical Bayes Procedures in Linear Models

In a classical parametric setup, a key factor in the implementation of the Empirical Bayes methodology is the incorporation of a suitable prior that is compatible with the parametric setup and yet lends to the estimation of the Bayes (shrinkage) factor in an empirical manner. The situation is more complex in semi-parametric and (ev,:,n more in) nonparametric models. Although the Dirichlet prior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2015